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that the specular intensity maximum corresponds to 
the angle ~' equal to 2~. Besides the specularly reflec- 
ted intensity diffuse scattering is observed, which 
might be caused by the surface unevenness and by 
the back edge of the sample. It is registered most 
clearly at the angle ~, > 14', i.e. in the case when the 
specularly reflected intensity may be neglected (see 
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Fig. 4. Distribution of the diffuse intensity for ~0 = 16'. (a) The 
crystal covers half of the beam (the forward wave can be seen); 
(b) the crystal covers the whole beam (no forward beam). 

Fig. 4a). The experiments showed a weakening of the 
diffuse intensity when only part of the incident beam 
reached the crystal back edge (see Fig. 4b). This fact 
showed that the main contribution to the diffuse 
scattering was due to the scattering at the sample 
back edge. 

Thus, the intensity measurement of the specularly 
reflected diffracted wave with its exit-angle change 
has been experimentally realized and the main state- 
ments of the theory (Afanas'ev & Melkonyan, 1983) 
have been confirmed. 

The authors express their sincere thanks to Pro- 
fessor A. M. Afanas'ev for his unfailing attention to 
the work and fruitful discussions, and to D. Novikov 
for the help in conducting the experiments. 
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Abstract 

The local atomic arrangement in the stainless-steel 
alloy Feo.s6Cro.2~Nio.23 has been investigated by ther- 
mal neutron diffuse scattering from sinsle crystals. 
The variation of contrast has been obtained by 
isotopic substitution: three single crystals of different 
isotopic compositions have been used. The Warren- 
Cowley parameters of the three heterogeneous pairs 
have been determined. It is shown that ordering 
occurs between Ni and Cr atoms. The correlation 
lengths are small and are of about one cell length. 
The static displacements are shown to be small. 
Analysis procedures of diffuse scattering from ternary 
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alloys are developed from neutron scattering and in 
the Appendix for X-ray scattering. 

I. Introduction 

During the last ten years, considerable developments 
have been made in analysing diffusely scattered 
intensity from mono-crystalline binary alloys since 
this provides the volume averaged pair atomic corre- 
lations by Fourier transformation. These can then be 
used to model important physical properties such as 
thermodynamic (pair interaction potentials) and 
mechanical properties and electrical resistivity. 

On the other hand, no direct determination of short- 
range ordering has been made on multicomponent 
solid solutions. As a consequence, evolutions of solid 
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solutions of practical interest are described merely 
by assumptions. The aim of this paper is to provide 
the first experimental evidence of short-range order 
in stainless-steel-type alloys. 

For such an experiment three independent diffuse 
scattered intensities are needed to measure the Fe-Ni, 
Fe-Cr and Ni-Cr pair correlations. These are 
obtained by three experiments on three crystals with 
identical chemical but different isotopic composition. 
Even for binary solid solutions, only a few results 
have been reported by neutron diffuse scattering on 
single crystals, despite the obvious advantage of the 
constant scattering length is reciprocal space: for 
example, on Ni3Fe (Lefebvre, Bley, Fayard & Roth, 
1981), Au4Mn (Nakashima, Mizuno, Ido, Sato, Mitani 
& Adachi, 1977) and CuMn (Wells & Smith, 1971; 
Hirabayashi, Koiwa, Yamaguchi & Kamata, 1978). 

The constant scattering length allows us to separate 
the effects due to order from displacement terms. To 
determine pair correlations for this ternary alloy, it 
would also be possible to use only one single crystal 
and X-ray diffuse scattering, with wavelengths close 
to the absorption edges of Fe, Cr and Ni. Conditions 
for this type of experiment, now feasible due to the 
availability of synchrotron radiation, are described 
in the Appendix. 

Austenitic iron-chromium-nickel alloys are used 
in nuclear reactors, in cryogenic containers and in 
high-field superconducting solenoids, because of their 
low susceptibility to corrosion and for their magnetic 
properties. These alloys retain a disordered f.c.c. 
structure from the melt to liquid-helium temperature 
over a large range of concentration. However, many 
experiments suggest that some kind of local order 
exists: Bell, Roser & Thomas (1964) have described 
contrast experiments using electron microscopy on 
superdislocations in Fe-20wt%Cr-30wt%Ni and 
40 wt% Ni which confirm earlier suggestions of the 
existence of some ordering (Douglass, Thomas & 
Roser, 1964). Pairs of dislocations have also been 
observed more recently in Feo.s7Cro.2oNio.23 and 
Feo.54Cro.2oNio.26 (Lef~vre, 1980). 

Feo.6Cro.2Nio.2 is a transition composition for mag- 
netic properties. Warners & King (1976) have shown 
that this alloy changes from anitferromagnetic to fer- 
romagnetic at low temperature on varying the compo- 
sition close to this point. In fact, in this transition 
zone, the alloy exhibits superparamagnetism, which 
the authors explain by small ferromagnetic clusters 
in an antiferromagnetic matrix. 

Heterogeneities of the microstructure and par- 
ticularly short-range order have been invoked by 
Dimitrov, Tenti & Dimitrov (1981) in order to explain 
a peak of resistivity with annealing temperature in 
Fe-16 wt%Cr-20 wt% Ni and 25 wt%Ni, near 823 K 
in unirradiated samples, and near 603 K in samples 
having undergone low-temperature irradiation with 
fast neutrons. 

A weak increase of the residual resistivity has been 
found in Feo.57Cro.2oNio.23 and Feo.54Cro.2oNio.26 (Pro- 
topopoff, 1981) after 5 h annealing at 773 K. In the 
same alloys, an increase of thermoelectric power has 
been found by Pelletier (1981) after 10 h annealing 
at 773 K. 

In the same range of concentration, Bendick & 
Pepperhoff (1981) have found specific heat anomalies 
near 503 and 873 K. But in this case, owing to kinetic 
considerations, these authors did not attribute any of 
these anomalies to short-range order. 

Considering all these results, a quantitative 
measurement of local order in FeCrNi alloys is 
necessary to determine what type of local atomic 
arrangement actually exists. 

II. General equations 

The general equations for scattering from a multicom- 
ponent and multisublattice solid solution have been 
given by Hayakawa & Cohen (1975). Following their 
treatment, the total diffuse intensity per atom from 
an N-component cubic alloy can be expanded up to 
the second-order displacements as 

N - 1  N 

I(hl, h2, h3)= ~ E XaXblfa--fbl2Otab'(hl, h2, h3) 
a = l  b > a  

N N 

+ E Y~ XaX,,(f,f*b +~A) 
a = l  b ~ a  

x[h,QTb(hl, h2, h3) 

+(hl)2R~b(hl, h2, h3) 

+h,h.rS~,~(h~,h2, h3)](J> I), (1) 

where hi, h2, h3 are the coordinates of the reciprocal- 
lattice vector h, xa, xb = the concentration of atoms 
(a, b, indices describing the chemical species), f~ = the 
atomic scattering factor of atom a, reduced by its 
Debye-Waller factor, /, J are Cartesian indices and 
implicitly refer to a summation. 

Expression (1) differs from Hayakawa's in that 
there is only one atom per cell and the Laue 
monotonic is not factorized in order to maintain the 
dependence of each term with complex atomic scat- 
tering factor. 

The different functions are 
! = + o o  m = +OO n = + o o  

otab(hl, h2, h3)= X X X otab(l,m, n) 
l = - o o  m = - o o  n = - o o  

x cos (27rhl 1) cos (27rh2m) 

x cos (21rh3n) (2) 
1 = + o o  m----+oo n = + O o  

Q~,b(ht, h2, h3) = -2-rr X X X Fab(l,m, n) 
l = - - O 0  m = - - o o  n = - - o o  

a b  x (xo,,.,,) sin (2"rrhi 1) 

× cos (2"rrh2m) cos (2¢rh3n) (3) 
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/=+CO m=-t-oO n = + O 0  

R~b(hl, h2, h3)=4w 2 E E • F'~b(l,m, n) 
l = - -O0  m = - - o o  n = - - o o  

x ( ( x ~ , )  2) cos (27rh I l) 

X COS (2"n'h2m) cos (2"n'h3n) (4) 

l = + c o  m=+OO rim+CO 

S~(h,,h2, h3) =8zr2 E E Z Fab(l,m, n) 
I=--o0 m-~--oo n = - - O 0  

ab ab x (xt,.,. Ytm..) sin (2¢rhl l) 

x sin (2wh2m) cos (2¢rh3n) (5) 

F""(l,m,n)=2![xa+~Xba"b(l,m,n)]} 
b~'~ (6) 

F"b(l,m,n) = 1 -a"b(l, m, n) a ~ b. 

Thus, two kinds of terms become apparent: firstly, 
the periodic modulations which depend only on the 
structure of the sample and, secondly, the coefficients 
of these functions which depend on the 'atomic scat- 
tering factors'. These coefficients must have different 
values if the periodic pair functions are to be separ- 
able and hence must be varied in different experi- 
ments. 

In (2) to (5), aab(l,m,n) is one of the [ N ( N -  1)/2] 
Warren-Cowley local order parameters introduced 
by de Fontaine (1971) for an N-multicomponent 
alloy. Terms between brackets have the same meaning 
as for the binary case. They are just the conventional 
displacement terms from the average lattice value 
with atom A at the site l,m,n and B at the origin. 

We note that (1) retains the binary expression form 
and consequently the detailed symmetry relations 
described by Gragg (1970) and Gragg & Cohen (197 l) 
hold with the same assumptions. 

Differences between binary intensity expression 
and (1) arise because pair parameters appear in linear 
combinations and several independent measurements 
are needed to separate them. The details of the separ- 
ation procedure will be discussed below. 

To obtain different 'atomic scattering factors' for 
the same chemical species, we can use two different 
methods. 

(l) In neutron diffuse scattering, the nuclear scat- 
tering lengths of elements depend on the isotope used 
and in some fortunate cases there exist enough 
isotopes of different elements for independent 
measurements to be made. 

(2) In X-ray scattering, the atomic scattering factor 
has significant variations in the vicinity of an absorp- 
tion edge of the element as a function of the incident 
X-ray wavelength. 

As has been suggested by Ramesh & Ramaseshan 
(1971), the anomalous dispersion corrections may be 
used to separate different terms in the diffuse scatter- 
ing. Owing to the availability of synchrotron radi- 
ation, these kinds of experiments may now be carded 
out. 

Finally, since, for neutron scattering, the scattering 
lengths do not vary with angle whilst, for X-rays, the 
atomic scattering factors do, it is necessary to separate 
each case and treat it accordingly. The neutrons are 
treated in the text and the case for X-rays is discussed 
in the Appendix. 

III. Thermal neutron scattering 

Two terms have to be considered: nuclear and mag- 
netic scattering. The nuclear term is scattering-angle 
independent since the nuclei have negligible spatial 
extension compared to the neutron wavelength. The 
magnetic term depends on scattering angle because 
it is due to the interaction of the neutron spin and 
the outer electrons. This term is only significant for 
magnetically ordered alloys; it may be suppressed in 
soft ferromagnetic materials by applying a suitable 
magnetic field. In the following, this term will not be 
considered. The only remaining scattering-angle- 
dependent term occurs because the atoms vibrate 
about their mean lattice positions (Debye-Waller 
factor). 

Assuming a mean 'Debye-Waller' factor for each 
type of atom, we write 

ba(h) = ba exp [-M~(h)] ~- b~ exp [ -M(h)]  

and we divide the diffuse scattered intensity on each 
reciprocal point by exp-2M(h) .  We obtain the fol- 
lowing expression for the coherent differential cross 
section 

do, 
dO exp [2M(h)] = IsRo(h) + h1Q,(h) 

+ (h,)2 R,(h) + hlhjS,,j(h), (7) 

where 

and 

N - I  N 

Isgo(h) = ~ ~ XaXb(ba--bb)2otab(h) 
a = l  b > a  

(8a) 

N N 

Q~(h)= Z Z x,,Xbb,,bbQ~,b(h) • (8b) 
a = l  b > a  

The terms ISRO, Qx being periodic in reciprocal space 
as in binary alloys, it is possible to apply the treatment 
of Boric & Sparks (1971 ; hereafter BS) [Gragg, 1970; 
Gragg & Cohen, 1971] without further assumptions. 

Let us now look at the short-range-order intensity. 
The separation of each pair intensity t~ab(h) (or by 
Fourier transform of each short-range-order pair 
parameter) can be achieved if N ( N -  1)/2 indepen- 
dent diffuse scattering measurements are provided by 
the different samples. 

For a ternary alloy, let us call IsRo,i(h) the short- 
range-order modulation found by the BS separation 
method for the ith experiment, and bA., the coherent 
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scattering length of the A-atom isotope in the ith 
sample. The pair intensities are solutions of a 3 x 3 
linear system of equations 

IsRo.,(h) = XAxa(bA,, -- bB.,) 2 t~ as (h) 

+ XAXc(bA, i -  bc.i)2ot AC (h) 

+ XBxc( bB, i - bc, i)2 otBC (h). (9) 

These expressions can be summarized under the 
matrix fom 

tr(h) = A&(h), 

where tr represents the vector of components IsRo, i 
and the A matrix consists of elements aij, where the 
subscripts i refer to the different experiments or 
samples and the subscripts j refer to the different 
pairs. 

The reliability of the solutions of the previous linear 
system is highly dependent upon the choice of 
isotopes. If the system is ill conditioned, small statis- 
tical errors Atr in the short-range-order intensities I, 
or small variations of the A-matrix elements (bA~ 
bA + AbA) would have a large effect on the solutions 

of the equations. 
Ill conditioning with respect to l inear  systems 

occurs when the matrix is nearly singular. The deter- 
minant of the normalized equations obtained by 
dividing the/ th  row by (~j=l _2~1/2 n uu) can be used as a 
test for ill conditioning (Westlake, 1968). If the 
absolute value of this determinant is small compared 
to 1, the system is ill conditioned. 

Another suitable criterion is given by the Turing 
number N(A), defined for a matrix of order n by 

N(A)  = n-'llal[ x I la- '  II, (10) 
where 

IIAII-- E (ao) 2 • (10a) 
j=3 

The Turing number of a matrix, the coefficients of 
which are chosen at random from a normal popula- 
tion, is of order ,fft. A change Ag due to the uncer- 
tainty in short-range-order intensity causes a change 
in ~ values such that 

IIAall/I1,~11 ~ nN(A)[llA,rll/lloll]. (lOb) 

Hence, N(A)  is a measure of conditioning (Westlake, 
1968). 

In  the present experiment on the stainless-steel 
alloy Fe0.56Cro.ztNio.z3, three samples of various 
isotopic compositions are used. The determinant of 
the normalized matrix calculated from the neutron 
characteristics given in Tables 1 and 2 is equal to 0-3, 
which is reasonably good. For example, determina- 
tions of partial structure factors in amorphous 
materials are commonly made with such a deter- 
minant less than 0.1. The Turing number is equal to 

Table 1. Isotopic composition and scattering lengths of  
the isotopes used 

The scattering lengths are computed from the data of Koester & 
Rauch (1981), for the particular isotopic compositions. 

Scattering 
length 

Isotopic composition (at. %) (fm) Isotope 
Natural 
iron 
Iron 54 

Chromium 52 

Nickel 62 

Nickel 58 

9.54 (6) 
54Fe 56Fe 57Fe 
99.65 0-33  0.02 4-2 (1) 
5°Cr 52Cr  53Cr 54Cr 
0.1 99.5 0.3 0.1 4.88 (2) 

5SNi ~Ni 61Ni 62Ni ~Ni 
1"17 0"80 0"19 97"7 0"14 -8-3 (2) 

58Ni 6ONi 61Ni  62Ni 64Ni 
99"8 0-15 <0"01 0.04 0 . 0 1  14.37(10) 

7; it can be compared to x/if= 1.732. This means that 
the system is reasonably well conditioned. 

According to the inequality (10b), the uncertainty 
on c~ decreases with decreasing uncertainty on the 
measurements Atr. This means that the Laue 
monotonic scattering of each sample must have a 
significant value. 

To extract explicitly each pair-displacement term 
additional measurements are needed. The expression 
for the intensity (1) involves 57 independent pair 
parameters [in general N(5 N +4)] including the Car- 
tesian decomposition of modulations such as Q. This 
number is reduced to [ N ( 5 N + 4 ) - 3 ] = 5 4  by 
inclusion of the three Cartesian relations of the 
volume conservation of each shell. The BS treatment 
allows only ten sets of independent parameters to be 
determined from each sample and hence to determine 
54 individual independent parameters, measurement 
would be required on N ( N + I ) / 2 = 6  different 
samples. 

It will be noted that, in the binary case, three 
samples are needed in order to determine all displace- 
ment terms up to second order. 

IV. Experiment 

(A) Samples 

The three cylindrical-shaped single crystals 
(5.5 mm diameter and 6 mm height) were grown 
simultaneously in alumina crucibles under a purified 
argon atmosphere using a Bridgman technique. The 
constituents used are as follows: 

first sample: natural Fe, isotope 62 of Ni, isotope 52 
of Cr; 
second sample: isotope 54 of Fe, isotope 62 of Ni, 
isotope 52 of Cr; 
third sample: natural Fe, isotope 58 of Ni, isotope 52 
of Cr. 

These samples are respectively labelled: Inox 1, 
Inox 2 and Inox 3. The isotopic composition and the 
scattering length of each isotope are given in Table 1. 
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Table 2. Atomic composition and differential cross sections for pair Laue monotonic, total Laue monotonic and 
total incoherent, of  each sample 

Total  incoheren t  
Atomic  composi t ion  Laue mono ton i c  differential 

(at. %)  (fin 2 a tom - l  sr - l )  cross sect ion 
Fe Ni Cr  F e - N i  F e - C r  N i - C r  Total  (fro 2 a t o m -  ~ s t -  1) 

56.06 23.02 20.92 41.07 (120) 2.55 (9) 8.37 (28) 51.99 (157) 3-89 
56-14 23.07 20.79 20.24 (98) 0.05 (2) 8.33 (28) 28.62 (128) 1-95 
56.11 23.04 20.85 3.02 (20) 2.54 (9) 4.33 (l I) 9.89 (40) 2.67) 

Inox 1 
Inox 2 
Inox 3 

The precise sample atomic compositions, given in 
Table 2, have been evaluated from pure metal 
weighing before a rapid plasma fusion, and with the 
assumption that the weight loss of each sample is due 
to chromium evaporation (approximately 0.2% of the 
total weight). 

Finally, the samples were spark machined and elec- 
tropolished before annealing for 1 h at 1273 K and 
10h at 773K under 1.3~Pa vacuum. The 
homogeneity of the samples, which was checked by 
X-ray analysis in a scanning electron microscope, is 
within 1% 

The resulting Laue monotonic pair values XaXV 
( b  a - b b )  2 and the incoherent differential cross section 
of each sample are listed in Table 2. The incoherent 
cross sections, which mainly arise from the nuclear 
incoherency, do not include the paramagnetic contri- 
bution which is very low. The incoherent scattering 
accounts for, respectively, 7.5, 6.8 and 27% of the 
total Laue monotonic. It should be noted that isotoPe 
52 of chromium has been used instead of the natural 
element since the nuclear incoherent cross section of 
the latter is increased by the incoherent nuclear spin 
scattering of isotope 53. 

For the chosen composition, the alloy is f.c.c, at 
any temperature between the melting point (Schur- 
mann & Brauckmann, 1977), to the lowest tem- 
perature (Warnes & King, 1976). The cell parameter 
is 3.583 A, according to Pearson (1958). 

( B) Intensity measurements 

The experiments were performed at room tem- 
perature on the three-axis four-circle diffractometer 
D10 at the ILL (Grenoble). The diffuse scattered 
intensities were measured with an 3He counter located 
behind a graphite analyser which eliminates the 
inelastic scattering owing to its resolution ZlA / A = 0. l 
for the neutron wavelength used (1.29 A). 

The low mosaicity of the crystals and the good 
resolution of the diffractometer allowed measure- 
ments close to the Bragg peaks, at a distance Ah = 0- l 
in reciprocal parameter units. 

The intensities were corrected for background 
intensity (denoted IBo) and absorption. The linear 
absorption coefficient of each sample was experi- 
mentally measured. For each position in reciprocal 
space, a transmission factor T~ is calculated, accord- 
ing to the precise shape of each sample. The intensities 

• are then converted to scattering-cross-section units 
from measurements of the purely incoherent scatter- 
ing intensity Iv of a hollow cylinder of polycrystalline 
vanadium, whose transmission factor is Tv. 

With the above notation, the coherent differential 
cross section (do'/dO)i of sample i is related to the 
measured intensities/~ and Iv by 

( d o t )  _ _ N v  tr_Zv Tv e x p - 2 M v  

d-~ i Ni 4~" Ti e x p - 2 M i  

( I , -  T/laG) o'i, n~ 
x (11) 

( i v -  TvlaG) 4zr '  

where orv/4zr = 5.06/4Ir is the differential incoherent 
cross section of vanadium, Mv = By(sin 2 0)/A 2 is the 
Debye-Waller factor of vanadium, B v = 0 . 5 7 ~  2, 
Mi = B~(sin 2 0)/A 2 is the mean Debye-Waller factor 
of the alloy; the value Bi -- 0.35 ,~2 is used in a first 
step; Nv, Ni are the numbers of atoms of vanadium 
and of samples i. 

For Inox l, the intensity is measured over the whole 
volume needed to separate short-range order from 
first- and second-order displacement modulations. 
This volume extends from 100 to 203 and 222 in 
reciprocal space, as described by Gragg (1970) and 
Gragg & Cohen (1971); it includes 1486 measurement 
points. For 5 min counting time the number of detec- 
ted counts ranges from 160 (near a maximum, for 
example the l l0  position) to l l0 near a minimum. 
In comparison, the background count is 8. 

Since the total intensity map shows only very small 
displacement effects, the volume of measurement was 
reduced for the other two samples (Inox 2 and Inox 
3). This volume, which enables the first-order dis- 
placement term to be measured extends from 001 to 
202 as previously described by Metcalfe & Leake 
(1975). The number of points was reduced to 576, 
and the counting time increased to 10 min. The num- 
ber of detected counts ranges from 220 to 120 for 
Inox 2 and is still lower for Inox 3 for which the 
number of counts ranges from 140 to 90. The back- 
ground is now 27 counts. 

The effect of statistical errors on the coherent differ- 
ential cross section is evaluated, taking into account 
background intensity and incoherent scattering, 
assuming a statistical error of ~ counts; the result- 
ing errors range from 8 to 11% for Inox 1, 8 to 12% 
for Inox 2, 11 to 30% for Inox 3. 
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The experimental iso-intensity curves are given in 
Fig. 1 for the three alloys. They are obtained by 
interpolation between the measured points. Statistical 
errors cannot be taken into account in these contours. 
The modulations of the Laue diffuse scattering, whose 
values are given in Table 2, are very weak in all three 
samples. Maxima appear near the 100 and 110 posi- 
tions which are the positions of cubic primitive 'super- 
structure' reflections. 

The modulation of the diffuse intensity along super- 
structure fundamental lines (Fig. 2) is similar for Inox 
1 and Inox 2. Since the Laue diffuse scattering of 
Inox 1 is dominated by the Fe-Ni term, this indicates 
very little order between nickel and iron. Despite 
large statistical errors, the observed modulations are 
seen to be meaningful. 

V. Separation of local order intensity: adaptation of 
the method of Borie & Sparks (1971) for low counting 

rates 

In the 'classical' Gragg (1970) analysis, which is a 
practical adaptation of the BS method, the short- 
range-order intensity at one point hlhEh3 is obtained 

~ o . s ?  301 3O2 
054 i : : : "'::" 

6 

051 ." :':'::: 

INOX I 

~ 0.34 

BO 

11111 
INOX 2 

(b) 

.202 

(a) 

22O 022 

,210 011 

~00 010 
INOX 3 

(c) 

021 

)20 

Fig. 1. Maps of experimental diffuse intensity, corrected with 
equation (1), in a (001) plane for the three samples. (Differential 
cross sections in 100 fm 2 atom -] sr-].) 

from a combination of diffuse intensities measured 
at five points, in order to extract displacement terms 
up to second order: 

[1]: h:, h2, h3, [2]: 2 -h i ,  h2, h3; [3]: 2+h : ,  h2, h3, 

[4 ] :h : , h2 ,2 -h3 ;  [ 5 ] : 2 - h ~ , h 2 , 2 - h 3 .  

These sets of points are sub-volumes of the whole 
volume in reciprocal space. Let I(1), I ( 2 ) , . . . ,  1(5) 
be the corresponding diffuse intensity values. The 
second-order displacement modulation components 
Rx and Sxy, at point hlh~h3, are first obtained directly 
by the two equations 

Rx(1) = I(2) + I ( 3 ) -  2I(1) (12) 

Sxy(1)=[I(1)-I(2)]+[I(5)-I(4)]. (13) 

Then Qx(1) at point hlh2h3 may be determined: 

Qx(1)=½[I(1)- I (2 ) ] -  h2Sxy(1) 

-h3Szx(l)-E(1-h~)Rx(1). (14) 

The short-range-order intensity, at point h~ h2h3 is the 
last result: 

ISRO(1) = I ( 1 ) - E  h,Q,(l) 

-Z h,hjSo(1)-Z h2R,(1) • (15) 
i 

In this 'classical' method, some steps in the calcula- 
tion have to be improved when the statistical error is 
large. 

(1) After the separation, ISRO is obtained in volume 
[1 ] which contains 480 points in this case; this volume 
is larger than the minimum volume for SRO determi- 
nation in f.c.c, structures which contains 160 points. 

do" ,! ) 
o l , , ,,Nox  ÷ , 

. . I I :~ overage taue 
0.30.2 " ~ , ~ ]  "'f-~'~ I~ '~ 

INOX 2 

0.1 
l I I 1 

INOX I 

0.3- 
100 200  201 202  3 0 2  

Fig. 2. Experimental intensity, in 100 fm 2 atom -] sr-:, along super- 
structure fundamental lines, for the three samples. 
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Thus we can average equivalent points before Fourier 
transforming. 

(2) The volumes [3], [4] and [5] are used only to 
extract second-order displacment terms, but, once this 
is done, the remaining intensities can be used to 
extract Qx and ISRO. SO, more points can be used, 
and averaged when equivalent, to decrease statistical 
errors; this is particularly useful when displacements 
are neglected. 

Thus, after the classical separation of second-order 
displacement terms, Q,, is computed in four different 
ways, according to the relations: I(1)--/(2); I (3)-I (1) ;  
1(4)-1(5); 1(2)-1(5). The average values of Qx are 
calculated for each point (hih2h3) of the minimum 
repeat volume for Qx, and then the contribution of 
first-order displacement terms is obtained in the 
whole measurement volume in order to give ISRO. The 
short-range order ISRO is then known at 1486 points 
and is calculated by averaging all the equivalent 
points, the number of equivalent points depends on 
their symmetry; it varies from 3 to 20, the average 
value being 10; so, for most of the points, the statis- 
tical error is reduced by a factor of 3. 

This procedure is applied for Inox 1 ; for the other 
two samples, it is assumed that Sxy and R,, vanish. 
The number of experimental pointsis  reduced to 576, 
and consequently the number of equivalent points of 
ISRO is reduced to about 3, and the statistical error 
is reduced by a factor of 1.7. 

The displacement intensities are the result of linear 
combinations of measured intensities. When these 
values are very weak, the various differences depend 
mainly on the statistical error. To test whether these 
intensities have a physical meaning, we have com- 
pared, for each measured point, the experimental 
intensity and the calculated one synthesized from 
ISRO, Qx, Rx and Sxy. We have computed the agree- 
ment ratio R for the following three cases: 

(a) the first- and second-order displacements are 
taken into account; 

(b) the second-order displacement terms are 
neglected; 

(c) the first- and second-order displacements are 
neglected. 

Table 3. Values of the agreement ratio R for the differ- 
ent methods of separation of lsRo, Io,, lo2 described in 

the text 
Sample Hypothesis Classical Modified 

Inox l a 0.3871 0-4883 
b 0.2746 0.1566 
c 0-1616 0-1221 

Inox 2 b 0.2383 0.2138 
c 0.1817 0.1520 

Inox 3 b 0.4280 0.4021 
c 0.3545 0.3113 

The agreement ratio is defined as 

R [!h'~ha}[Iexp(hih2h3)-lcal(hlh2h3)]2] 1/2 
= -- . . . .  (16) 

{h,~h3, [Iexo(h'h2h3)]2 J 
The agreement ratios, calculated with both methods 
- classical and modified BS method - are compared 
in Table 3. 

For weak displacement effects, and a low counting 
rate, it is better to neglect second-order displacements 
for both methods. If they are not neglected, the 
modified method is worse than the classical one. 
Indeed, distant points in reciprocal space are used to 
determine average ISRO and Qx, and then the errors 
on Rx and S,,y modulations are amplified by the 
multiplying factors such as h 2 or hihj. 

If the second-order terms are neglected, the agree- 
ment ratio is improved in the modified method, owing 
to the large number of ways to determine the modula- 
tions Qx and ISR o. This conclusion is not so clear for 
Inox 2 and Inox 3 where the total number of measure- 
ment points is reduced. Finally, the values of the 
agreement ratio, especially for the modified method, 
in case c are in good agreement with the evaluation 
of the statistical error for each sample. 

Short-range-order intensity maps, for the three 
samples, are shown in Fig. 3. Broad maxima occur 
near 'superstructure'  positions of the primitive cubic 
structure, and also near Bragg peaks. In the sample 
Inox 3, the superstructure maxima extend along 
superstructure-superstructure lines. The averaging of 

o,o 

<. ~.0.."~6 ~./ 

000~~0o 000 
INOX 1 
(a) 

220 

200 

148 13 . 10 

I NOX 2 
(b) (c) 

| 

000 1200 
I NOX 3 

Fig. 3. Short-range-order intensity maps in a (001) plane for the three samples. Modified Sparks & Bode method and hypothesis b 
have been used. 
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T a b l e  4. Fourier coefficients ' arm, o f  the short-range 
intensity for  each sample 

Units are 100 fm 2 atom-t Sr-~. 

A B  T a b l e  5. Pair short-range order parameters ot lm. 

Hypothesis b = second order 
displacement terms equal to 0 

Hypothesis b = second order lmn Fe-Ni Fe-Cr 
displacement terms equal to 0 000 0.975 1-075 

lmn Inox 1 Inox 2 lnox 3 110 0.025 0.027 
200 0.002 0.096 000 0.4983 0.2641 0.0985 211 -0.002 0.044 110 -0.0009 -0.0070 -0.0050 220 0.002 0-007 200 0.0129 0.0100 0.0078 310 0.001 0.018 211 0.0012 0.0005 0-0016 222 0.006 -0.025 220 0.0012 0.0006 0-0003 321 0.004 -0.004 310 0.0003 -0.0004 0.0002 400 -0-002 0-045 222 0.0017 0.0012 -0.0005 

321 0.0011 0.0004 -0.0002 Hypothesis c = all displacement 
400 0.0016 0.0008 0.0017 terms equal to 0 

Hypothesis c = all displacement 
terms equal to 0 

lmn Inox 1 Inox 2 Inox 3 
000 0.4911 (15) 0.2688 (16) 0.0965 (9) 
110 -0.0024 (4) -0.0057 (4) -0.0046 (3) 
200 0"0123 (6) 0"0116 (6) 0"0075 (4) 
211 0.0010 (3) 0.0006 (3) 0.0012 (2) 
220 0.0003 (4) 0.0007 (4) -0.0001 (2) 
310 0.0003 (3) 0-0003 (3) -0-0007 (2) 
222 0.0013 (5) 0-0015 (5) -0.0002 (3) 
321 0.0005 (2) 0.0000 (2) 0.0000 (1) 
400 0.0012 (6) 0.0018 (6) 0.0009 (4) 

Ni-Cr 
0.938 

-0.148 
0.119 
0.012 
0.002 

-0.006 
0.001 

-0.004 
0-013 

e q u i v a l e n t  p o i n t s  t h e r e f o r e  a l l ows  us to  h a v e  b e t t e r  
s ta t is t ics ,  a n d  t h e  m o d u l a t i o n s  o f  s h o r t - r a n g e - o r d e r  
i n t e n s i t y  b e c o m e  c lea re r .  T h e  d i s p l a c e m e n t  i n t e n s i t i e s  
a re  v e r y  w e a k  a n d  wi l l  be  n e g l e c t e d .  

Iron Fe-Ni Fe-Cr Ni-Cr 
000 0.959 (7) 0.959 (52) 0.973 (30) 
110 0-017(2) -0.009(14) -0"113(8) 
200 -0.002 (3) 0.043 (20) O. 148 (12) 
211 -0.002 (1) 0.029 (10) 0.012 (6) 
220 0.001 (2) -0.017 (13) 0.007 (8) 
310 0.003 (1) -0.024 (10) -0.003 (6) 
222 0.003 (2) -0.033 (17) 0.012 (10) 
321 0.002 (1) 0.005 (6) -0.004 (4) 
400 - O. 002 (3) -0.009 (20) O. 026 (12) 

00T 
, I i , , , t ; ~ m 2 + n  2 

110 200  220  222 400 

VI.  L o c a l  o r d e r  

ab In  a t e r n a r y  a l loy ,  t h e  p a i r  p a r a m e t e r s  Ollm n are  
o b t a i n e d  by  t w o  e q u i v a l e n t  m e t h o d s :  

S e p a r a t i o n  o f  s h o r t - r a n g e - o r d e r  i n t e n s i t i e s  co r re -  
s p o n d i n g  to  e a c h  p a i r  o f  a t o m s ,  by  s o l v i n g  a s y s t e m  
o f  l i n e a r  e q u a t i o n s  fo r  e a c h  p o i n t  o f  r e c i p r o c a l  space ,  
p r e c e d i n g  t h e  F o u r i e r  t r a n s f o r m ,  as e x p l a i n e d  p re -  
v i o u s l y ;  

F o u r i e r  t r a n s f o r m  o f  t h e  s h o r t - r a n g e - o r d e r  
i n t e n s i t y  o f  e a c h  s a m p l e ,  a r e s o l u t i o n  o f  a set  o f  l i n e a r  
e q u a t i o n s .  T h e  F o u r i e r  coef f i c ien t s  alton are  r e l a t e d  to  
arm, b y  t h e  s a m e  c o n t r a s t  m a t r i x  as in  t h e  first case :  

a i m  n ~-- AOtlm n. 

T h e  p a r a m e t e r s  a~m,, o f  e a c h  s a m p l e  a re  g i v e n  in  T a b l e  
4, fo r  t h e  t w o  b e t t e r  t r e a t m e n t s  p r e v i o u s l y  e x p l a i n e d :  
(b)  w i t h  f i r s t -o rde r  d i s p l a c e m e n t s ;  (c)  w i t h  n o  dis-  
p l a c e m e n t  a t  all. 

T h e  v a l u e s  o f  p a i r  p a r a m e t e r s  ob O~m. are  g i v e n  in  
T a b l e  5. T h e i r  v a r i a t i o n  w i t h  i n t e r a t o m i c  d i s t a n c e  
(12+m2+n2) 1/2 is s h o w n  in  Fig.  4. T h e  s c a t t e r i n g  

l e n g t h s  b o f  t h e  e l e m e n t s  a n d ,  t hus ,  t h e  c o n t r a s t  m a t r i x  
h a v e  b e e n  c h o s e n  w i t h i n  t he  l imi t s  o f  a c c u r a c y ,  in  

ab 
o r d e r  to  g ive  v a l u e s  o f  aooo as c lose  as p o s s i b l e  to  1. 

A c c o r d i n g  to  t h e  r e su l t s  o f  T a b l e  5, t h e  m o s t  s t r i k ing  
f e a t u r e  is t h a t  p a i r  c o r r e l a t i o n s  b e t w e e n  Ni  a n d  Cr  
a re  l a rge  in  t h e  first t w o  shel ls .  T h e  v a l u e s  o f  o t h e r  

-0.05 I ' I , i i i 
110 2 0 0  220  222 400  

0.05 

Fe -Cr 

0 . 1 0  N i _ C r  

0 . 0 5  

- 0 . 0 5  - 

-0. I I  

2 0 0  220 222 4 0 0  
I J I I J I I I 

110 211 310 321 

A B  Fig. 4. Pair short-range-order parameters alran versus interatomic 
distance. Modified Sparks & Bode method and hypothesis b 
have been used. 
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pair-correlation parameters are weak and will be dis- 
cussed further, when errors will be evaluated. 

The pair short-range-order intensities, calculated 
using the first eight a parameters (hypothesis c, 
assuming no displacements) are shown in Fig. 5. The 
maxima of intensity occur at the 100 and 110 positions 
as in an L12 structure for the Ni-Cr, and at 1 ½0 
positions for the Fe-Cr  pair. For the Fe-Ni pair the 
maxima of diffuse scattering are located around Bragg 
peaks. 

VII. Accuracy of short-range-order pair parameters 

We now discuss the errors made on the a correlation 
parameters. They have three main origins: (A) the 
errors due to the reduction of experimental data to 
scattering cross section units; (B) the errors due to 
the statistical errors on measurements, and their 
influence on Fourier coefficients a~,., ; (C) the errors 
related to the resolution of linear equations at,.n = 
A Ot lmn. 

(A) According to formula (11), the differential coher- 
ent scattering cross section depends on: (1) the 
Debye-WaUer factor; (2) the incoherent differential 
cross section of samples; (3) the normalization factor 
EUFAC. 

(1) The three components of the alloy being close 
together in the periodic table, an average common 
value of the Debye-Waller factor is chosen. The com- 
plete analyses have been done with two extreme 
values of the Debye-Waller factor, 0.35 and 0.50, 
chosen to bound the experimental value of the disor- 
dered-Ni3Fe Debye-Waller factor (0.40/~2). The 
results are unaffected by using either 0.35 or 0.50. 

(2) The incoherent diffuse scattering cross section 
o's,c, calculated from the isotopic and impurity com- 
position of each sample, is particularly large for the 
third alloy. It is similar to a background noise, and 
an error on Orin c affects only the first term of the 
Fourier transform (aooo, or a00o). 

(3) The errors on the normalization factor EUFAC 
may be significant, since this factor is proportional 
to the difference between the vanadium and back- 
ground intensities. The vanadium diffuse intensity is 
weak because a hollow cylinder is used to avoid 
multiple scattering. 

020 I u ,  220 020 220 020 2* u t7 220 

000 FeNI 200 000 FeCr 200 000 Ni Cr 200 

Fig. 5. Pair short-range-order diffuse intensity maps, synthesized 
with the first eight aAalm,. Modified Sparks & Bode method and 
hypothesis c have been used. 

Assuming the same relative error on the normaliz- 
ation factor + 8 ( E U / E U  for any sample, the resulting 
relative error on the pair short-range-order parameter 
set is 

A ( ol ab 1",) = ~[8(EU)/EU]ce ~,, (17) 

for any pair ab, and lmn # 000. 
For lmn = 000, the error is increased by the term 

A , ~  p a i r  __ - 1  i n c  ~0oo - [8(EU)/EU]A o'~,ox/4rr, (18) 

A being the contrast matrix. A qualitative idea of the 
errors on EUFAC may be obtained by comparison 
between the values of ao0o and the total Laue value 
of each sample. 
(B) The errors induced by the BS procedure of separ- 
ation of short-range order and displacement 
intensities has been discussed in § V, leading to the 
conclusion that the size effects are small enough to 
introduce diffuse scattered intensity less that the 
statistical errors in the total diffuse scattering. 

The evaluation of these statistical errors on direct 
intensity measurements has been given before 
(§ IVB). They introduce errors on the at,., coefficients, 
which have been computed with an expression similar 
to that given by Auvray, Georgopoulos & Cohen 
(1981). The standard deviation, due to counting statis- 
tics, of the at,., parameters are given in Table 4, in 
units of the last digit, for case c (displacement terms 
neglected). 

The coefficients a0oo should equal the total Laue 
monotonic values. Discrepancies from these expected 
values are very weak (compare Tables 2 and 4). The 
largest relative error reaches only 4% in case c. The 
results seem fairly accurate in spite of the weakness 
of scattered intensities. 

To test the physical meaning of the values of the 
coefficients at,.n, the short-range-order intensity has 
been synthesized using an increasing number of para- 
meters and compared to the experimental averaged 
diffuse intensity. The resulting agreement ratios are 
shown in Fig. 6. It is clear that, for the three samples, 
the first two az,., have a physical meaning, but not 
the other ones. 
(C) The resolution of the linear equations at,., = 
Aa~,.n gives an amplification of the errors on the 
coefficients at,., which depends on the conditioning 
of the contrast matrix A. In this experiment, an error 
of 4% on aooo (case c) introduces an error of 5% on 
aoo0 (Tables 4 and 5). 

Knowledge of the standard deviations due to 
counting statistics o'(a~m,,) allows us to compute the 
corresponding standard deviation of the a Aff,, using 
T = A  -l, the inverse matrix of the contrast matrix. 
Then, 

,,.,) = t~tr2(ai,.,) (19) 

These standard deviations are given in Table 5, for 
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case c; they are much smaller than those evaluated 
by the Turing relation. As should be expected from 
pair Laue values, the accuracy is largest for the Fe-Ni 
pair and smallest for the Fe-Cr pair. 

A slight modification of scattering lengths b, which 
are known with an accuracy which varies from one 
isotope to another, induces a variation of the matrix 
A, and thus of the a parameters. As we have chosen 
the b scattering lengths so as to have the best values 
of aooo, we have to test the effect of b variation on 
the coefficients a~m,. By changing the scattering 
lengths of the isotopes 52Cr, 62Ni, 58Ni and 54Fe by 
0-12, 1-7, 0.17 and 0.45%, respectively, the Laue 
intensities change by less than 2.7%. The resulting 
errors on the significant a~m, are smaller than the 
statistical ones by an order of magnitude except for 
ao0o. These errors on aooo are 2, 11 and 4%, respec- 
tively, for the pairs Fe-Ni, Fe-Cr and Ni-Cr. 

(13 K per 1% Cr) (Ferjani, 1978). The tendency of Cr 
to order with Ni leads to a strong decrease of the 
Fe-Ni interaction. 

The range of short-range ordering is confirmed by 
the observation of isolated pairs of dislocations is 
stainless-steel-type alloys. 

A second consequence of the value of the correla- 
tion length is that the kinetic considerations used by 
Bendick & Pepperhoff (1981) to exclude local atomic 
arrangement as an explanation of the 873 K specific- 
heat anomaly must be reinvestigated. 

A third consequence is that resistivity measure- 
ments are suitable to detect, in this case, the state of 
short-range order: in fact, resistivity changes are 
mainly due to the modification of the first and second 
shells, in contrast to the diffuse intensity which 
integrates all the Fourier contributions az,~n of short- 
range order. 

VIII. Conclusion 

In this ternary alloy, there is short-range order 
between nickel and chromium. Despite the relatively 
large values of the Cowley parameters a Nio cr and 
a~o cr, the correlation range is short and one can 
consider that the other Ni-Cr short-range-order pair 
parameters are zero. There is a small correlation of 
iron and chromium, and it is possible that iron-rich 

F e N i  which clusters exist in the alloy, as suggested by o~ 1~o , 
F e C r  and also is known much more precisely than a~o , 

by a preliminary experiment of small-angle neutron 
scattering we have made with these alloys. There is 
no tendency of short-range order between iron and 
nickel, in contrast with the well known tendency of 
iron and nickel to order in the f.c.c, solid solution 
(Wakelin & Yates, 1953; Lefebvre, Bley, Fayard & 
Roth, 1981; Paulevr, Dautreppe, Laugier & Nrel, 
1962; Roth, Chamberod & Billard, 1978). This may 
be compared with the strong decrease in critical order- 
ing temperature of Ni3Fe for chromium additions 

0.30 
l ogreement rotto 
+., l FT.. k Llexp ( k ) _ icat ( k )_] 2] 1/2 

= [\ J 

i 0.20[ / 

÷ 
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0 1 2 3 8 
number of otto n porometers 

Fig. 6. Agreement ratio R for short-range-order intensity synthe- 
sized using ao ~ a,, compared to experimental lsRo obtained in 
case c, with the modified method of separation. 
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APPENDIX 

X-ray diffuse scattering 

The development of high-energy storage rings gives 
the possibility of analysing local order in multicom- 
ponent alloys. The possibility of obtaining any chosen 
wavelength allows one to take advantage of the high 
variation of structure factor near absorption discon- 
tinuities. The aim of this Appendix is to develop some 
points which are specific to the analysis of ternary 
alloys, and to provide some implements for deciding 
whether X-ray measurements are possible with a 
given alloy. 

As a consequence of the angular variation of the 
scattering factors, 54 of the 57 periodic functions c~, 
Q, R, S have to be separated and independently 
known. The contrast variation necessary for this 
separation may be obtained in two ways: the variation 
of the scattering factors with the radiation wavelength 
and the angular variation of the scattering factors. 
The first method is used in the Boric-Sparks-like 
method and the second in the Tibballs-like method. 

(A) The six-wavelength method 

This method is directly derived from the BS treat- 
ment (Bode & Sparks, 1971; Gragg & Cohen, 1971) 
but avoids some of its drawbacks. 

In order to allow a quantitative comparison 
between the conceptual method developed here and 
its experimental efficiency, we have calculated the 
values of anomalous dispersion correction for some 
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elements. They have been computed from the Parratt 
& Hempstead (1954) theory, using the oscillator 
strength data given by Cromer (1965). The computed 
values show good agreement with those computed by 
Cromer (1965) at particular wavelengths, as well as 
with those measured by Bonse & Materlik (1976), for 
example on Ni at AA/Ar  = 10 -2. 

If we require all the displacement terms and all the 
SRO terms, without using the angular variation of 
the scattering-factor method, then we have to under- 
take six experiments with six different wavelengths. 
This number of wavelengths is equal to the number 
of wavelength-independent scattering-factor 'groups' 
appearing in (1) after transformations such as 

[fA(h)f*~(h) +f*A(h)fB(h)] = --lfA(h)--fB(h)[ 2 

+ IfA(h)l 2 + lfB(h)l 2, 

for example, which lead to the following expression 
for intensity: 

Ix (h) = [fA(h) --fB(h)l 2 Tz(h) ÷ IfA(h) - f c  (h)l 2 T2(h) 

+ IfB(h) - f c  (h)l 2 T3(h) + I fA(h)l 2 T4(h) 

+ lfs(h)l 2 Ts(h) + I fc (h)l 2 T6(h), (A I) 

where 

T, (h) = XAXs[ ~ AS (h) - htQ As(h) - (h,)2 R AS(h) 

- hlhjS~,](h)] (A2) 

r4(h) = (XA)2[ h,Q ~AA(h) + (h,)2 R ~AA(h) 

+ hthjSi.A~(h)] + XAX~[htQA~(h) 

+ (h,)2 gAS(h ) + h,hjS~jn(h)] 

+ XAXc[ h,Q Ac (h) + (h,)2 g AC (h) 

+ h,hjS~.C(h)] (33) 

and similar expressions for the others. 
The main advantage of this decomposition Of 

intensity is that it differentiates the six Ti functions 
which characterize order and depend on the scattering 
vector h from the six scattering-factor 'groups' which 
contain all the wavelength dependence of the 
intensity. Let us define, for a given set (h~, h2, h3) a n  
intensity column vector I whose components /j 
account for a measurement at a particular wavelength 
)tj and let T be the column vector of component Ti 
previously defined, each component being the 
equivalent of the binary BS expression. 

Equation (AI) will now be written in matrix form: 

I = CMT or T = C~dl, (A4) 

where CM is the contrast matrix. 
To constructthe intensity vector in the BS measure- 

ment volume, each component T~ of the T vector is 
separated by inverting the contrast matrix for each 
point (hlh2h3). Then the T~ components are analysed 

Table 6. Associated Turing number N(CM) and deter- 
minant of  normalized matrix for the contrast matrix 

(Fe-Cr-Ni  alloy) 

Set 1 Set 2 
sin 0/A N(CM) Determinant N(CM) Determinant 

0-1 105 5 x 10 -7  64  2 x 10 -6  
0"3 47 9 x 10 -6  28 4 x 10 - s  
0"5 19 2 x l 0  - 4  12 9 x l 0  - 4  

following the binary procedure yielding a value for 
each individual parameter. The six wavelengths have 
to be chosen so that they produce a well-conditioned 
linear system for all reciprocal space. This method is 
applicable to alloys such that each element has an 
absorption edge in the wavelength range from about 
0.5 to 2/~. The wavelengths are then chosen on both 
sides of these absorption edges. 

Here, we consider the case of the Ni -Fe-Cr  alloy. 
This method would be clearly applicable since there 
are pronounced varations in the dispersion correc- 
tions close to the K edges (Fig. 7). The wavelengths 
of the K absorption edges of pure Ni, Fe and Cr are 
respectively 1.488, 1.743 and 2.070 ~ .  We have used 
two sets of wavelengths to test the method: 

first set: /~1 = 1.470, 32 = 1.493, )[3 = 1.739, '~4-~" 

1.900, 35 = 2.065, A 6 = 2.200 A; 
second set: Ai, A~=1.489, A~=1.741, 34, At = 

2.068/~, 36. 
They are on both sides of the K edges and, for each 
element, one of the wavelengths is very close to the 
K edge (AA---5 x 10 -3/Yk in the first set, AA---2 x 
10 - 3 / ~  in the second set). The Turing number of the 
contrast matrix and the determinant of the normalized 
matrix have been calculated for the two sets and for 
some values of s = sin 0/A (Table 6). 

The accuracy of the method is improved when, for 
each element, one of the wavelengths is as close as 
possible to the K absorption edge; it is also improved 
when the volume of measurement is shifted towards 
greater values of s, but this is a limited possibility. 
These matrices are not very well conditioned, but it 
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Fig. 7. Real and imaginary part of the anomalous dispersion cor- 

rections for the elements Ni-Fe-Cr. The arrows indicate the 
precise wavelengths used in the calculation of the Turing number 
of Table 1. 
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is probably possible, with accurate measurements, to 
obtain good results. 

The conditioning of the system Ni -Fe-Cr  may be 
compared to that of the system Au-Ag-Cu.  The 
wavelengths have been chosen on both sides of K 
absorption edges of Cu and Ag and of L absorption 
edges of Au; for s = 0.1, the Turing number is 1.4 x 10 4 
and the determinant of the normalized matrix is 5 x 
10 -12 . In this system, it is clearly impossible to use 
this method of separation. 

In some cases, if all displacement terms T4, Ts, T6 
are not required, it may be expected that the number 
of experiments is reduced to three. The expression 
of the intensity has to be written, for example, as 

Ai ~ "  I fA(h) --fB(h)l ~, T1(h) + IfA(h) -fc (h)i ~, T2(h) 
+ lfB (h) -fc (h)l ~,, T3(h) 
+ [fA(h)l 2,[ T4(h) + if~(h)/fA(h)l 2, Ts(h) 
+ [ fc (h ) / fA(h)[  2 T6(h)]. (A5) 

But for each experiment the wavelength is chosen to 
give an appreciable dispersion correction f '  and f"  
so that the ratios [fB/fAI and [fc/fA[ are far from 
constant for the set of three experiments. As the 
[ fA- f s I  2, factors also have very different variations 
in reciprocal space, a correct separation of the pair 
short-range-order modulations is clearly impossible 
without assuming that displacement terms are negli- 
gible. 

(B) Methods derived f rom that o f  Tibballs 

This method (Tibballs, 1975) developed by Geor- 
gopoulos & Cohen (1977, 1981), may be directly gen- 
eralized by the use of 54 functions instead of 25 in 
binary alloys. If only one wavelength is used, difficul- 
ties will arise because of the large size of the reciprocal 
volume to explore: one needs to reach the 620 
reciprocal points, in the case of a f.c.c, disordered 
lattice, and it is likely that the higher-order displace- 
ment terms may not be neglected since they are multi- 
plied by h 3 or h 4. 

If more wavelengths are used, the Tibballs method 
may be generalized with a total volume of at least 54 
minimal volumes. Here, the matrices to invert are 
54 x 54. 

A particular method, with two wavelengths, allows 
the inversion of smaller matrices (29 x 29). Measure- 
ments are carried out with two wavelengths on each 
side of the absorption edge of one of the elements A, 
and the difference I(Xl, h)-/(a2, h) is analysed 
(Ramesh & Ramaseshan, 1971). The following criteria 
must be fulfilled for this method to be meaningful. 

(1) AI and A2 are short enough to be associated 
with measurement volumes equal to 29 'minimal 
volumes to repeat SRO' (instead of 25 in a binary 
Tibballs scheme). 

(2) For any point in the measurement volume, the 
difference IA.- IA= is sufficiently large to avoid redun- 
dant information from A I and A2. 

(3) The difference AA between the two wavelengths 
is small enough that the variation o f f '  and f"  for the 
two other species B and C can be neglected. 

The intensity difference may then be written 

I(Ab h ) -  I(A2, h) 

- XAX~ifA(h)--fB(h)12A2 ~ ab(h) 
+ XAXcIfA(h) - 2 - AC - f d h ) ] ~ . ~  (h) 
+(XA)21fA(h)I2 AA 2 AA ~,j,2[h,Q, (h)+(h,)R, (h) 

+ hlhj&j (h)] 

+ xaxa[f*(h)fA(h) +f*A(h)f.(h)]~,~ 2 

x [ hfQf" (h) + (h,)2 R f" (h) + h,h]S~] (h)] 

+ XAXc(f*(h)fA(h) +f*A(h)fc (h))~,.~ 
x[h,Q'~C(h) +(hD2RAC(h) + h,h.~SA, jC(h)], (A6) 

where (fA)A,A2 accounts for the difference (fA)AI- 
(fA)A2, for example, and 

f .  = [f,(A 1) +fs(A2)]/2 -'-/,(A i) "/B(A2). 

In this expression there remain only 29 periodic 
functions. These may be separated by a Tibballs-like 
treatment - provided that fA, fB, f c  have sufficiently 
different angular dependences. These modulations 
are then introduced as input in the expression of 
I(a,, h)+I(a=, h), the remaining unknown modula- 
tions are separated following the same Tibballs-like 
treatment. 

This method is well suited to alloys where A, B, C 
are separated in the Periodic Table and where A is 
sufficiently heavy that it has an £ absorption edge in 
the range 0.5 to 1.5/~. A good example is the Cu-Ag-  
Au alloy. As can be seen from Fig. 2, f '  and f"  of Ag 
and Cu atoms are nearly constant in the wavelength 
range associated with the broad L absorption edge 
of Au. The terms neglected in the intensity difference 
expression are only 0.2 or 0.3% for the wavelengths 
indicated by arrows on Fig. 8. The suitability of a 
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Fig. 8. Real and imaginary part of the anomalous dispersion cor- 

rection for the elements Au-Ag-Cu. 
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Tibballs-like analysis depends on the variation of the 
ratios fgg/fcu with sin 0/;t. These values are similar 
to those in the CuAI binary case (Auvray et al., 1981) 
and it seems possible to perform such an analysis. 

( C) Discussion 
It has been shown that there is no systematic 

method of analysis for X-ray scattering, each alloy 
having to be considered as a special case dictating 
the number of wavelengths to be used. However, two 
main kinds of  analysis are pointed out; the six- 
wavelength method which correctly overcomes the 
difficulties arising from the atomic-scattering-factor 
variation with s and the mixed method which uses 
these variations to a large extent. Nevertheless, 
intrinsic difficulties must be overcome. Some of the 
wavelengths used must be as near as possible to the 
absorption edge, to enhance the contrast variation 
[for example (h - hr.)/hK ~ 10 -3) and, hence, a good 
wavelength reproducibility and a good discrimination 
(AA/A < l0 -3) are needed. They also require precise 
knowledge of the absorption edges, the values of  
which are shifted, alloying producing a modification 
of the screening effect. So, in spite of  the improvement 
in the theoretical computation of anomalous disper- 
sion corrections (Cromer & Liberman, 1981), these 
latter must be experimentally determined. 
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